Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Neuroimage ; 290: 120569, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38461959

Functional near infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) both measure the hemodynamic response, and so both imaging modalities are expected to have a strong correspondence in regions of cortex adjacent to the scalp. To assess whether fNIRS can be used clinically in a manner similar to fMRI, 22 healthy adult participants underwent same-day fMRI and whole-head fNIRS testing while they performed separate motor (finger tapping) and visual (flashing checkerboard) tasks. Analyses were conducted within and across subjects for each imaging approach, and regions of significant task-related activity were compared on the cortical surface. The spatial correspondence between fNIRS and fMRI detection of task-related activity was good in terms of true positive rate, with fNIRS overlap of up to 68 % of the fMRI for analyses across subjects (group analysis) and an average overlap of up to 47.25 % for individual analyses within subject. At the group level, the positive predictive value of fNIRS was 51 % relative to fMRI. The positive predictive value for within subject analyses was lower (41.5 %), reflecting the presence of significant fNIRS activity in regions without significant fMRI activity. This could reflect task-correlated sources of physiologic noise and/or differences in the sensitivity of fNIRS and fMRI measures to changes in separate (vs. combined) measures of oxy and de-oxyhemoglobin. The results suggest whole-head fNIRS as a noninvasive imaging modality with promising clinical utility for the functional assessment of brain activity in superficial regions of cortex physically adjacent to the skull.


Magnetic Resonance Imaging , Spectroscopy, Near-Infrared , Adult , Humans , Magnetic Resonance Imaging/methods , Spectroscopy, Near-Infrared/methods , Hemodynamics/physiology , Skull
2.
Pediatr Neurol ; 122: 68-75, 2021 09.
Article En | MEDLINE | ID: mdl-34301451

BACKGROUND: Changes in cerebral blood flow in response to neuronal activation can be measured by time-dependent fluctuations in hemoglobin species within the brain; this is the basis of functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS). There is a clinical need for portable neural imaging systems, such as fNIRS, to accommodate patients who are unable to tolerate an MR environment. OBJECTIVE: Our objective was to compare task-related full-head fNIRS and fMRI signals across cortical regions. METHODS: Eighteen healthy adults completed a same-day fNIRS-fMRI study, in which they performed right- and left-hand finger tapping tasks and a semantic-decision tones-decision task. First- and second-level general linear models were applied to both datasets. RESULTS: The finger tapping task showed that significant fNIRS channel activity over the contralateral primary motor cortex corresponded to surface fMRI activity. Similarly, significant fNIRS channel activity over the bilateral temporal lobe corresponded to the same primary auditory regions as surface fMRI during the semantic-decision tones-decision task. Additional channels were significant for this task that did not correspond to surface fMRI activity. CONCLUSION: Although both imaging modalities showed left-lateralized activation for language processing, the current fNIRS analysis did not show concordant or expected localization at the level necessary for clinical use in individual pediatric epileptic patients. Future work is needed to show whether fNIRS and fMRI are comparable at the source level so that fNIRS can be used in a clinical setting on individual patients. If comparable, such an imaging approach could be applied to children with neurological disorders.


Brain Mapping/standards , Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging/standards , Spectroscopy, Near-Infrared/standards , Adult , Congresses as Topic , Female , Humans , Male , Middle Aged , Neurology/methods , Neurology/standards , Pediatrics/methods , Pediatrics/standards , Young Adult
3.
Physiol Rep ; 6(3)2018 02.
Article En | MEDLINE | ID: mdl-29411543

A longitudinal study of monocrotaline-induced pulmonary arterial hypertension (PAH) was carried out in Sprague-Dawley rats to investigate the changes in impedance (comprising resistance and compliance) produced by elevated blood pressure. Using invasively measured blood flow as an input, blood pressure was predicted using 3- and 4-element Windkessel (3WK, 4WK) type lumped-parameter models. Resistance, compliance, and inductance model parameters were obtained for the five different treatment groups via least-squares errors. The treated animals reached levels of hypertension, where blood pressure increased two folds from control to chronic stage of PAH (mean pressure went from 24 ± 5 to 44 ± 6 mmHg, P < 0.0001) but blood flow remained overall unaffected. Like blood pressure, the wave-reflection coefficient significantly increased at the advanced stage of PAH (0.26 ± 0.09 to 0.52 ± 0.09, P < 0.0002). Our modeling efforts revealed that resistances and compliance changed during the disease progression, where changes in compliance occur before the changes in resistance. However, resistance and compliance are not directly inversely related. As PAH develops, resistances increase nonlinearly (Rd exponentially and R at a slower rate) while compliance linearly decreases. And while 3WK and 4WK models capture the pressure-flow relation in the pulmonary vasculature during PAH, results from Akaike Information Criterion and sensitivity analysis allow us to conclude that the 3WK is the most robust and accurate model for this system. Ninety-five percent confidence intervals of the predicted model parameters are included for the population studied. This work establishes insight into the complex remodeling process occurring in PAH.


Hypertension, Pulmonary/physiopathology , Models, Cardiovascular , Pulmonary Artery/physiopathology , Animals , Hemodynamics , Hypertension, Pulmonary/etiology , Male , Monocrotaline/toxicity , Rats , Rats, Sprague-Dawley
...